圆环面积教学反思

更新时间:2023-12-30 21:23:33
圆环面积教学反思

作为一名优秀的人民教师,我们的任务之一就是课堂教学,通过教学反思可以很好地改正讲课缺点,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的圆环面积教学反思,欢迎阅读,希望大家能够喜欢。

圆环面积教学反思1

一节课上下来,我感觉有好多地方都应该改进。

1、教学语言不丰富,导致对学生的评价方式非常单一,提问方式单一,造成课堂气氛比较沉闷,没有充分调动学生的积极性。一节课上下来,学生教师都很累。

2、课前对学生的估计过高,所以拓展题的训练感觉学生再囫囵吞枣,大部分学生根本就很不会做。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。

3、在引导时大半部分都是自己把着讲,留给学生思考的时间、空间太少,在一定的程度束缚了学生的思维发展。

4、由于习惯问题,我语速非常的快,可能学生只要稍微有一点不专心,就听不清我在讲什么。

5、知识点拓展的深度不够。在认识了解圆环各部分名称的时候就提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽”,但没有让学生将环宽与大半径、小半径进行对比,导致学生对环宽的理解有点模糊,致使拓展训练第2题只有三四个学生会做。

当然,一节课下来,学生掌握知识的深度,学生课堂生成的巧妙处理,每个学生的能力否得到培养等都值得研讨,因此我恳请在座的各位领导和各位老师给予我更多的批评指正。

圆环面积教学反思2

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。在认识圆环的设计中安排了经历剪圆环的动手操作过程。设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。

不足之处:1、练习题没能全部完成,导致没有实现练习的层次性。2、知识点拓展的深度不够。这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。

圆环面积教学反思3

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积,总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做:

首先是明确概念,.初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象。

第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。

第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件演示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。从而为下面求环形的面积作铺垫,自然而然,学生肯定也明白了怎样求圆环的面积.

学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来不是在理解的基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积,但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。

圆环面积教学反思4

教学内容:

圆环的面积计算,简单组合图形面积的计算。

教学目标:

1、使学生认识以圆环,掌握圆环的特征,掌握计算圆环面积的方法。

2、培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

3、会计算组合图形的面积,能根据各种图形的特征和条件,有效地选择计算方法。

教学重、难点:

1、掌握计算圆环面积的方法。

2、掌握求简单组合图形面积的方法。

教学方法:

例证法、类比法、迁移法。

教学过程:

一、复习引入

1、圆面积的计算公式

2、计算圆的面积

r=5厘米d=6米C=15.7分米

二、探索新知

1、出示实物,认识圆环

出示光盘。提问:谁能用语言描述这个光盘?

2、实践操作,感知圆环

(1)刚才我们简单认识了圆环,现在你们能用手上的工具剪出一个圆环吗?

学生用一张白纸剪一个圆环。

(2)学生操作,动手剪环形。(教师巡视指导,帮助学有困难的学生)

(3)说出剪圆环的过程。

让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减去小圆的面积。

3、探究环形面积的计算方法。

(1)小组讨论:如何计算圆环的面积?

(2)反馈讨论结果。

学生汇报时,边说边演示从一个大圆里去掉一个同心小圆变成环形的动态过程:先求出外圆和内圆的面积,再求出环形的面积。

思考:要计算环形的面积需要什么条件?

通过师生交流后,明确要计算环形的面积需要知道外圆(大圆)的半径或直径和内圆(小圆)的半径或直径。

4、应用新知,解决问题。

(1)出示例2:光盘的银色部分是个圆环,内圆半径是2厘米,外 ……此处隐藏5193个字……是计算圆环的面积。我请同学来说一说算式怎么列。学生很快变说出来了。我们又进行了对式子含义的理解。前面表示什么,后面表示什么。加深求圆环面积的思考思路就是大圆面积剪去小圆面积。

3、对求圆环面积的另一种方法,有同学自己写出来但是问他理由他说书上看来的。请同学仔细看看还有10来个同学看出这个是乘法分配率的应用,(我给予了肯定,)。

4、有效利用了课堂的自然生成。通过有些同学剪的时候他们对折再对折请同学们计算对折后的图形,半圆环面积即圆环面积的一半。这是同学们自己折叠出来的,算是课堂的自然生成把。后来却没有让同学门计算再对折后的图形的面积。

今天值得深思的地方

1、头痛计算。通过巡视发现同学们在计算平方时却出现了252-52=202的情况,还有学生252=50。我请学生来说一说平方是怎么计算的,还有把平方减展开,然后计算。再翻开口算训练计算1-10的平方,希望能亡羊补牢。2、对半圆环的面积计算。因为同学们做了圆环,所以当我把圆环对折后问同学,这个图形的面积怎么计算时,学生们都能说出,就是圆环面积的一半,但是在课堂上面却没有列式计算,课堂作业本上面就有这样一道题目,从做的效果来看,全班39人中,有10人没有把圆环的面积除以2或乘以1/2。拓展题都没有时间做。还有1个学生还是对圆环的面积计算出现了严重的问题(课堂中间已经强调过了)。好学生的说法掩盖了后进生的计算问题。看来在课堂上面不仅要弄清题意列出正确的算式还要带领学生好好计算。

3、没有即使表扬学生。当有同学们说把圆对折在对折再对折好剪时没有好好表扬学生。

圆环面积教学反思13

《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。引导学生通过操作、交流、讨论、合作学习等方式再通过引导学生主动探究,发现圆环面积的计算方法,回想圆的面积的探索过程,你能得到启发,分一分、剪一剪、拼一拼,看能不能得到环形面积计算的另一种方法。小组合作探究,通过画两个大小不同的同心圆,分圆,剪出环形,拼成近似的平行四边形或拼成近似的长方形,观察边的变化。通过这样的操作、观察,经历了图形的变换过程,并认识到环形的面积的求法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系

本节课我感觉还有几个值得探讨的地方:1,列举生活中的圆环放在哪里更适合?2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。

圆环面积教学反思14

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。

剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。

环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。

虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、“环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。

不足之处:

1、练习题没能全部完成,导致没有实现练习的层次性。其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。

2、知识点拓展的深度不够。在认识圆环特征的时候提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽‘‘但没有让学生将环宽与大半径、小半径进行对比,从而得出了它们之间的联系与区别,(大半径与小半径都是从圆心到圆上的线段;而环宽是小圆上到大圆上的距离,表示环形的宽度。R-环宽=r r+环宽=R)为今后做题提供很好的保障。

这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。

圆环面积教学反思15

《圆环面积的计算》教学反思《圆环面积的计算》是在学生学习了圆的面积的基础进行教学的。在本节课上,首先,我利用多媒体图片播放各类图片,创设学习环境,凸显情景教学的本质问题,创设情境的目的是为了引发学生探究数学问题的兴趣。通过动手操作引出圆环。然后由几个图形的比较,学生通过仔细观察,发现圆环的特点,激发了学生的学习兴趣。再通过引导学生主动探究,发现圆环面积的计算方法。学生在此过程中,激活了已有的知识和生活经验,沟通了新旧知识的联系。 其次,我尽可能的赋予丰富的情感因素,用数学的情感去吸引学生,激发他们学习的热情,体会学习数学的乐趣。练习时我也是围绕生活实际,让学生多层次的解决问题,提高学生的应用意识和解决问题的能力。课堂是学生思维成长的土壤,数学课时更应该如此。在课堂评价时,我想了很多鼓励学生的话,学生在肯定和赞赏的语言评价中得到自信和成功的喜悦。这几点都是这节课做得成功的地方。

本节课我感觉还有几个值得探讨的地方:

1,列举生活中的圆环放在哪里更适合?

2,圆环是否一定是个同心圆,如果不是同心圆,他还是圆环吗?事实上,如果不是同心圆,也一样可以求出两个圆之间部分的面积,也是用大圆面积减去小圆面积。

3,在拿到学生的作业在台上展示时,是否应该先出示正确的解答?如果给他们的第一思维呈现出正确的知识,然后再呈现错误的解答,这样学生就能更清晰的掌握方法和知识点。

《圆环面积教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式