《反比例意义》教学反思(集合15篇)

更新时间:2024-06-29 09:05:22
《反比例意义》教学反思(集合15篇)

作为一名到岗不久的老师,我们要有很强的课堂教学能力,通过教学反思可以很好地改正讲课缺点,那么什么样的教学反思才是好的呢?下面是小编整理的《反比例意义》教学反思,欢迎阅读与收藏。

《反比例意义》教学反思1

一、教材分析

反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

二、学情分析

由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

三、教学目标

知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

四、教学重难点

重点:理解反比例函数意义,确定反比例函数的表达式.

难点:反比例函数表达式的确立.

五、教学过程

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

位:m)随宽x(单位:m)的变化而变化。

请同学们写出上述函数的表达式

14631000(2)y= tx

k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

是自变量,y是函数。

此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

举例:下列属于反比例函数的是

(1)y= (2)xy=10 (3)y=k-1x (4)y= -

此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

已知y与x成反比例,则可设y与x的函数关系式为y=

k x?1

k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

例:已知y与x2反比例,并且当x=3时y=4

(1)求出y和x之间的函数解析式

(2)求当x=1.5时y的值

解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

六、评价与反思

本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

《反比例意义》教学反思2

反比例的意义的教学,考虑到前面正比例的教学,所以在教学上就采用了正比例这样的教学程序。通过逐层深化的方法慢慢帮助学生建立反比例的正确意义。由具体数据和表格式的例题的教学到具体数量之间的关系的判断。然后再到一些比较特别的例子的判断,从而慢慢形成反比例的正确理解。

因为反比例的意义这一部分内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习正比例的意义为基础,采取了放手的形式,通过开始教师引导后就直接把研究和讨论的要求交给了学生,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析、概括、发现规律,这样不仅仅是教会了学生学习的内容,还培养了学生的自学能力。

本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在着一定的共性,因此学生在整堂课的思维上与前面学习的正比例相比有明显的提高。但是这一节课还是出现一些学生注意力不够集中的情况。同时在教学中由于小组合作的关系,个别学困生没有做到较好的参与。

《反比例意义》教学反思3

反比例关系是一种重要的数量关系,它渗透了初步的函数思想,是六年级数学教学的一个重点。但由于这部分内容比较抽象、难懂,历来都是学生怕学、教师怕教的内容。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。

一、创设情景激发求知欲望

我从身边的现实生活中发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知创设了现实背景并激发了积极的情感态度。

二、深入探究,理解涵义

在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析例4,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。

三、比较猜想,归纳规律

我考虑到例5和例4相仿,必须注意学习方式不能雷同。所以采取请学生当“老师”的方式,进一步把自主权交给学生,营造了民主、平等、宽松、和谐的课堂氛围,因而对例5的学习探索取得更深一层的效果。然后通过例4、例5同质比较,归纳出成反比例的两种量的3个特点,再以此和正比例的意义作异质比较,猜想出反比例的意义。最后经过读书验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了合情推理的能力。]

四、联系旧知识,渗透难点

联系旧知,抓住概念与旧知之间的联系,以旧引新,得出新知,在联系中渗透重点难点,为引出概念打下伏笔,减轻学生理解概念的困难程度,使得学生对概念的理解轻松有效。例如本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思 ……此处隐藏8521个字……人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

设计理念:

学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

教学目标:

1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

一、复习铺垫,猜想引入

师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

2.猜想

师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

师:从字面上看“反比例”与“正比例”会是怎样的关系?

生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

生:(略)

反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

二、提供材料,组织研究

1.探究反比例的意义

师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

(1)表中有哪两个相关联的量?

(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

2.小组讨论、交流。(教师巡回查看,并做适当指导。)

3.汇报研究结果

(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

生2:已行路程十剩下路程=总路程(一定)。

生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

4.做一做(略)

5.学习例6

师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

三、巩固练习,拓展应用

1.基本练习。(略)

2.拓展应用。

师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

3.综合练习

四、总结

反思:

《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

《反比例意义》教学反思15

课堂教学是对学生进行思想品德教育的最有利时机,数学教材本身也蕴含着丰富的思想教育内容。我在教学时,经常结合学生的实际,采用灵活多样的方法,挖掘教材中的思想教育内容,有针对性的对学生进行思想品德教育。例如,出示小朋友读《安徒生童话选》例题时,我告诉学生在课余时间要多读书,增长知识;在练习李明骑自行车的练习时,提醒学生在上学放学路上要注意交通安全。简短、温馨的话语,温暖滋润了学生的心,拉近了师生的距离。

根据我自己的反思及听课老师的点评,本节课还需改进的地方有:

一、复习正比例的知识时分的过细,只复习正比例的意义就可以了,这样学生就可以根据正比例的意义判断正比例,为学习反比例奠定基础,还可以节约时间。

二、教师在课堂上要更加用心的倾听学生的发言,发现学生不规范的语言要及时提醒更改。例如有个别学生说:一个量扩大,另一个量增加,5乘以6,这些地方平时我都提醒学生注意,但是这节课没有及时纠正。

三、教师对学生的评价性语言要丰富,富有针对性,能调动学生的积极性,培养自信心。

四、反比例的知识是个难点,很抽象,学生往往硬套意义来判断,因此,讲解例题和练习时,要多设计图表型的题目,让学生形象的看到两个量的变化规律,直观的计算、比较出两个量的积一定,简明的理解反比例的意义。

五、数学课上,计算题、应用题和正、反比例的意义等内容主要靠学生分析、对比、概括、判断等,有时整节课枯燥无味,如何让这种课也能变得生动有趣,活泼精彩,还需要教师好好思考。

《《反比例意义》教学反思(集合15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式